Featured Publications


A barrier to drug development for nonalcoholic steatohepatitis (NASH) is the absence of translational preclinical human-relevant systems. An in vitro liver model was engineered to incorporate hepatic sinusoidal flow, transport, and lipotoxic stress risk factors (glucose, insulin, free fatty acids) with cocultured primary human hepatocytes, hepatic stellate cells (HSCs), and macrophages. Transcriptomic, lipidomic, and functional endpoints were evaluated and compared with clinical data from NASH patient biopsies. The lipotoxic milieu promoted hepatocyte lipid accumulation (4-fold increase, P< 0.01) and a lipidomics signature similar to NASH biopsies. Hepatocyte glucose output increased with decreased insulin sensitivity. These changes were accompanied by increased inflammatory analyte secretion (e.g., IL-6, IL-8, alanine aminotransferase). Fibrogenic activation markers increased with lipotoxic conditions, including secreted TGF-β (>5-fold increase, P < 0.05), extracellular matrix gene expression, and HSC activation. Significant pathway correlation existed between this in vitro model and human biopsies. Consistent with clinical trial data, 0.5 μM obeticholic acid in this model promoted a healthy lipidomic signature, reduced inflammatory and fibrotic secreted factors, but also increased ApoB secretion, suggesting a potential adverse effect on lipoprotein metabolism. Lipotoxic stress activates similar biological signatures observed in NASH patients in this system, which may be relevant for interrogating novel therapeutic approaches to treat NASH.


BACKGROUND: Propionic acidemia (PA) is a disorder of intermediary metabolism with defects in the alpha or beta subunits of propionyl CoA carboxylase (PCCA and PCCB respectively) enzyme. We previously described a liver culture system that uses liver-derived hemodynamic blood flow and transport parameters to restore and maintain primary human hepatocyte biology and metabolism utilizing physiologically relevant milieu concentrations.

METHODS: In this study, primary hepatocytes isolated from the explanted liver of an 8-year-old PA patient were cultured in the liver system for 10 days and evaluated for retention of differentiated polarized morphology. The expression of PCCA and PCCB was assessed at a gene and protein level relative to healthy donor controls. Ammonia and urea levels were measured in the presence and absence of amino acid supplements to assess the metabolic consequences of branched-chain amino acid metabolism in this disease.

RESULTS: Primary hepatocytes from the PA patient maintained a differentiated polarized morphology (peripheral actin staining) over 10 days of culture in the system. We noted lower levels of PCCA and PCCB relative to normal healthy controls at the mRNA and protein level. Supplementation of branched-chain amino acids, isoleucine (5mM) and valine (5mM) in the medium, resulted in increased ammonia and decreased urea in the PA patient hepatocyte system, but no such response was seen in healthy hepatocytes or patient-derived fibroblasts.

CONCLUSIONS: We demonstrate for the first time the successful culture of PA patient-derived primary hepatocytes in a differentiated state, that stably retain the PCCA and PCCB enzyme defects at a gene and protein level. Phenotypic response of the system to an increased load of branched-chain amino acids, not possible with fibroblasts, underscores the utility of this system in the better understanding of the molecular pathophysiology of PA and examining the effectiveness of potential therapeutic agents in the most relevant tissue.

Copyright © 2015 Elsevier Inc. All rights reserved.


The development of drugs to treat cancer is hampered by the inefficiency of translating pre-clinical in vitro monoculture and mouse studies into clinical benefit. There is a critical need to improve the accuracy of evaluating pre-clinical drug efficacy through the development of more physiologically relevant models. In this study, a human triculture 3D in vitro tumor microenvironment system (TMES) was engineered to accurately mimic the tumor microenvironment. The TMES recapitulates tumor hemodynamics and biological transport with co-cultured human microvascular endothelial cells, pancreatic ductal adenocarcinoma, and pancreatic stellate cells. We demonstrate that significant tumor cell transcriptomic changes occur in the TMES that correlate with the in vivo xenograft and patient transcriptome. Treatment with therapeutically relevant doses of chemotherapeutics yields responses paralleling the patients' clinical responses. Thus, this model provides a unique platform to rigorously evaluate novel therapies and is amenable to using patient tumor material directly, with applicability for patient avatars.


Objectives—The predictive value of animal and in vitro systems for drug development is limited, particularly for nonhuman primate studies as it is difficult to deduce the drug mechanism of action. We describe the development of an in vitro cynomolgus macaque vascular system that reflects the in vivo biology of healthy, atheroprone, or advanced inflammatory cardiovascular disease conditions.

Approach and Results—We compare the responses of the in vitro human and cynomolgus vascular systems to 4 statins. Although statins exert beneficial pleiotropic effects on the human vasculature, the mechanism of action is difficult to investigate at the tissue level. Using RNA sequencing, we quantified the response to statins and report that most statins significantly increased the expression of genes that promote vascular health while suppressing inflammatory cytokine gene expression. Applying computational pathway analytics, we identified statin-regulated biological themes, independent of cholesterol lowering, that provide mechanisms for off-target effects, including thrombosis, cell cycle regulation, glycogen metabolism, and ethanol degradation.

Conclusions—The cynomolgus vascular system described herein mimics the baseline and inflammatory regional biology of the human vasculature, including statin responsiveness, and provides mechanistic insight not achievable in vivo.


An experimental in vitro model of the hemodynamics that occur in atrial fibrillation (AFib) in the left atrial appendage (LAA) was developed to study changes in human endothelial cell thrombotic potential. We applied human-derived sinus rhythm and AFib hemodynamic shear stress patterns to primary human endothelial cells (ECs) in culture. We found that ECs exposed to AFib hemodynamics have increased thrombotic potential as measured by increased expression of pro-thrombotic gene markers and fibrin deposition on the endothelium. Treatment with the factor Xa inhibitor, apixaban, attenuated fibrin deposition thickness while increasing fibrin density at the endothelial cell surface. This study suggests that altered hemodynamics associated with AFib play a key role in driving the thrombotic potential of the LAA endothelium.


Atherosclerosis is an inflammatory disease that preferentially forms at hemodynamically compromised regions of altered shear stress patterns. Endothelial cells (EC) and smooth muscle cells (SMC) undergo phenotypic modulation during atherosclerosis. An in vitro coculture model was developed to determine the role of hemodynamic regulation of EC and SMC phenotypes in coculture. Human ECs and SMCs were plated on a synthetic elastic lamina and human-derived atheroprone, and atheroprotective shear stresses were imposed on ECs. Atheroprone flow decreased genes associated with differentiated ECs (endothelial nitric oxide synthase, Tie2, and Kruppel-like factor 2) and SMCs (smooth muscle α-actin and myocardin) and induced a proinflammatory phenotype in ECs and SMCs (VCAM-1, IL-8, and monocyte chemoattractant protein-1). Atheroprone flow-induced changes in SMC differentiation markers were regulated at the chromatin level, as indicated by decreased serum response factor (SRF) binding to the smooth muscle α-actin-CC(a/T)6GG (CArG) promoter region and decreased histone H4 acetylation. Conversely, SRF and histone H4acetylation were enriched at the c-fos promoter in SMCs. In the presence of atheroprotective shear stresses, ECs aligned with the direction of flow and SMCs aligned more perpendicular to flow, similar to in vivo vessel organization. These results provide a novel mechanism whereby modulation of the EC phenotype by hemodynamic shear stresses, atheroprone or atheroprotective, play a critical role in mechanical-transcriptional coupling and regulation of the SMC phenotype.

HemoShear has more than 30 publications validating our platform in a range of scientific applications. For more information, contact info@hemoshear.com.



501 Locust Avenue
Suite 301
Charlottesville, Virginia 22902